\begin{tabular}{|c|c|c|c|}
\hline (i) \& \[
\begin{aligned}
\& \text { Median }=3370 \\
\& Q_{1}=3050 \quad Q_{3}=3700 \\
\& \text { Inter-quartile range }=3700-3050=650
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
\(B 1\) for \(Q_{3}\) or \(Q_{1}\) \\
B1 for IQR
\end{tabular} \& 3 \\
\hline (ii) \& \begin{tabular}{l}
Lower limit \(3050-1.5 \times 650=2075\) \\
Upper limit \(3700+1.5 \times 650=4675\) \\
Approx 40 babies below 2075 and 5 above 4675 so total 45
\end{tabular} \& ```
B1
B1
M1 (for either)
A1
``` \& 4 \\
\hline (iii) \& Decision based on convincing argument: eg 'no, because there is nothing to suggest that they are not genuine data items and these data may influence health care provision' \& E2 for convincing argument \& 2 \\
\hline (iv) \& All babies below 2600 grams in weight \& B2 CAO \& 2 \\
\hline (v) \& (A)
\[
\begin{aligned}
\& X \sim B(17,0.12) \\
\& P(X=2)=\binom{17}{2} \times 0.12^{2} \times 0.88^{15}=0.2878
\end{aligned}
\]
\[
\text { (B) } \quad \begin{aligned}
\& \mathrm{P}(X>2) \\
\& =1-\left(0.2878+\binom{17}{1} \times 0.12 \times 0.88^{16}+0.8^{17}\right) \\
\& =1-(0.2878+0.2638+0.1138)=0.335
\end{aligned}
\] \& \begin{tabular}{l}
\[
\text { M1 }\binom{17}{2} \times p^{2} \times q^{15}
\] \\
M1 indep \(0.12^{2} \times 0.88^{15}\) A1 CAO \\
M 1 for \(\mathrm{P}(X=1)+\mathrm{P}(X=0)\) \\
M1 for \(1-\mathrm{P}(X \leq 2)\) \\
A1 CAO
\end{tabular} \& 3

3 \\
\hline (vi) \& Expected number of occasions is 33.5 \& B1 FT \& 1 \\
\hline \& \& TOTAL \& 18 \\
\hline
\end{tabular}

| $\mathbf{2}$ <br> (i) | The range $=55-15=40$ <br> The interquartile range $=35-26=9$ | B1 CAO <br> B1 CAO | $\mathbf{2}$ | | |
|---|---|---|---|---|---|
| (ii) | $35+1.5 \times 9=48.5$ <br> $26-1.5 \times 9=12.5$ <br> Any value $>48.5$ is an outlier (so 55 will be an <br> outlier), | M1 for 48.5 oe <br> M1 for 12.5 oe | A1 (FT their IQR in (i)) |$\quad$ 3 | One valid comment such as eg: |
| :--- |
| Positively skewed <br> Middle $50 \%$ of data is closely bunched |
| (iii) |


| $\begin{aligned} & \hline \mathbf{3} \\ & \text { (i) } \end{aligned}$ | Mean score $=(2 \times 8+3 \times 7+4 \times 6+5+4) / 11=$$6.36$ |  |  | $\begin{aligned} & \text { M1 for } \sum f x / 11 \\ & \text { A1 CAO } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (ii) |  |  |  | G1 Linear sensible scales <br> G1 fds of $8,28,38,26,6$ or $4 k$, $14 k, 19 k, 13 k, 3 k$ for sensible values of $k$ either on script or on graph. <br> G1 (dep on reasonable attempt at fd) Appropriate label for vertical scale eg ‘Frequency density', 'frequency per $1 / 2$ unit', 'students per mean GCSE score'. (allow Key) | 3 |
| (iii) | Mid <br> point, $x$ <br> 5 <br> 5.75 <br> 6.25 <br> 6.75 <br> 7.5 <br> Sample m $\boldsymbol{S}_{x x}=233$ <br> Sample s. | $x$ <br> 40 <br> 80.5 <br> 118.75 <br> 87.75 <br> 45 <br> 372 <br> $=6.2$ <br> $=28.475$ <br> $=0.695$ | $\mathrm{fx}^{2}$ <br> 200 <br> 462.875 <br> 742.1875 <br> 592.3125 <br> 337.5 <br> 2334.875 | B1 mid points <br> B1FT $\sum f x$ and $\sum f x^{2}$ <br> B1 CAO <br> M1 for their $S_{x x}$ <br> A1 CAO | 5 |
| (iv) | Prediction of score $=13 \times 7.4-46=50.2$ So predicted AS grade would be B |  |  | M1 For $13 \times 7.4-46$ <br> A1 dep on 50.2 (or 50 ) seen | 2 |
| (v) | Prediction of score $=13 \times 5.5-46=25.5$ <br> So predicted grade would be D/E (allow D or E) <br> Because score roughly halfway from 20 to 30, OR (for D) closer to D than E OR (for E) past E but not up to D boundary |  |  | M1 For $13 \times 5.5-46$ <br> A1 dep on 25.5 (or 26 or 25) seen <br> E1 For explanation of conversion - logical statement/argument that supports their choice. | 3 |
| (vi) | $\begin{array}{\|l\|} \hline \text { Mean }=13 \times 6.2-46=34.6 \\ \text { Standard deviation }=13 \times 0.695=9.035 \end{array}$ |  |  | B1 FT their 6.2 <br> M1 for 13 x their 0.695 <br> A1 FT | 3 |
|  |  |  |  | TOTAL | 18 |


| Qn | Answer | Mk | Comment |
| :--- | :--- | :--- | :--- |
| $\mathbf{4}$ | Mean $=657 / 20=32.85$ | B1 cao |  |
| (i) | Variance $=\frac{1}{19}\left(22839-\frac{657^{2}}{20}\right)=66.13$ | M1 |  |
| (ii) | Standard deviation $=8.13$ | A1 cao |  |
| $32.85+2(8.13)=49.11$ | M1 ft | Calculation of 49.11 |  |
|  | none of the 3 values exceed this so no outliers | A1 ft |  |

